Gate Antiphase of Potassium Channel
نویسنده
چکیده
Potassium channels are integral membrane proteins that selectively transport K+ ions across cell membranes. They function through a pair of gates, which work in tandem to allow the passage of the ions through the channel pore in a coupled system, to which I refer to here as the “gate linker”. The functional mutation effects, as described in the literature, suggest that the gate linker functions analogously to a triad of coiled springs arranged in series. Accordingly, I constructed a physical model of harmonic oscillators and analyzed it mechanically and mathematically. The operation of this model indeed corresponds to the phenomena observed in the mutations study. The harmonic oscillator model shows that the strength of the gate linker is crucial for gate coupling and may account for the velocity, direction, and efficiency of ion transfer through the channel. Such a physical perspective of the gating process suggests new lines of investigation regarding the coupling mode of potassium channels and may help to explain the importance of the gate linker to channel function.
منابع مشابه
Channel thickness dependency of high-k gate dielectric based double-gate CMOS inverter
This work investigates the channel thickness dependency of high-k gate dielectric-based complementary metal-oxide-semiconductor (CMOS) inverter circuit built using a conventional double-gate metal gate oxide semiconductor field-effect transistor (DG-MOSFET). It is espied that the use of high-k dielectric as a gate oxide in n/p DG-MOSFET based CMOS inverter results in a high noise margin as well...
متن کاملPerformance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملDesign of a Resonant Suspended Gate MOSFET with Retrograde Channel Doping
High Q frequency reference devices are essential components in many Integrated circuits. This paper will focus on the Resonant Suspended Gate (RSG) MOSFET. The gate in this structure has been designed to resonate at 38.4MHz. The MOSFET in this device has a retrograde channel to achieve high output current. For this purpose, abrupt retrograde channel and Gaussian retrograde channels have bee...
متن کاملCoupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity.
Potassium (K(+))-channel gating is choreographed by a complex interplay between external stimuli, K(+) concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA-Kv1.3 channel to delineate K(+), pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated wit...
متن کاملPerformance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor
In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017